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Abstract

We outline a multiprocessor architecture that uses modular arithmetic to im-

plement numerical computation with 900 bits of intermediate precision. A proposed

prototype, to be implemented with off-the-shelf part, vill perform high-precision

arithmetic as fast as some workstations and mini-computers can perform IEEE

double-precision arithmetic. W discusshow the structure of modular L arithmetic

conveniently maps into a simple, pipelined multiprocessor architecture. We present-

techniques -we developed to overcome a few classical drawbacks of modular arith-

metic. Our architecture is suitable to and essential for the study of chaotic dynamical

systems.
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.1. Introduction

We have designed and functionally simulated a multiprocessor architecture

which uses modular arithmetic to implement fast, extremely precise arithmetic opera-

tions. The structure of modular arithmetic exhibits immense parallelism, allowing an

implementation of high-precision fixed-point arithmetic that is comparable in speed to

the IEEE double-precision arithmetic (64 bits) provided by some of the floating-point

units in workstations and mini-computers. By implementing multiple fixed-point

number systems on top of a modular number system with 18 moduli rapring from

229 - 1 to 264, we obtain over 900 bits of intermediate precision.

High-pre'ision computation is essential in numerical studies of chaotic sYs-

tems. The behaviour of these systems are extremely sensitive to their initial condi-

tions, rendering numerical simulation with low-precision arithmetic extremely difficult

and frequently useless. Chaos theory, combined with precise numerical simulation,

has been applied in orbital mechanics [Sussman 88], and work is in progress on using

computation and chaotic phenomena in physical systems. These applications require

tremendous amounts of high-precision computation, which our architecture will ef-

fectively provide. We also believe that this architecture can be adapied to perform

efficient symbolic algebra and cryptography.

The idea of using the modular number system to speed up computer arith-

metic is not new. Extensive work was done in the 60's to investigate its viability

Szabo 67]. Even more effort was spent on digital signal processing applications

[Soderstrail 86]. However, owing to difficulties in performing division, sign detec- "-

tion. and magnitude comparison in this representation, modular arithmetic is seldom

used in general-purpose computer arithmetic.

Our approach of using medium-sized (< 64 bit) binary numbers to support For

a 900 bit modular arithmetic system, which in turn implements high-precision fixed-

point arithmetic, allowed us to overcome some of the problems associated with mod-

ular arithmetic. The approximate magnitudes of the 900 bit numbers are tracked

by a conventional floating-point unit. This information can be used t, -educe in the -. .

number of normalizations. The floating-point estimates produce initial guesses for a
Newtn aa'.po .ysis

Newton-Rlaphson dfivisioni routine, and are used iin roulghl iagnlitude comparisons. . l:i/or



We start with a brief overview of modular arithmetic and how it is used to
implement efficient fixed-point arithmetic. We discuss how we avoid some intrinsic

pitfalls of modular arithmetic, and how modular arithmetic can be implemented on

pipelined, parallel hardware.

2. Modular Arithmetic

The modular arithmetic system is also known as the residue number system

(RNS). A number is represented by the remainders (digits) formed when it is divided

by a set of pairwise relatively prime numbers (moduli). For example, the integer 1710

is represented in an RNS with moduli {2,3,5,7} by the digits {1,2,2,3}. We refer to

an RNS number as a modnum.

2.1 Modular Arithmetic Operations

An RNS consisting of relatively prime moduli with product M can be used

to represent signed integers [(-M/2), (M/2) - 1]. 1 Three basic arithmetic operations -

add. subtract, and multiply - on modnums can be implemented as digit-wise modular

operations. So, in an RNS with moduli {m(,_l), ... ,mi,m0},

I{X(n-l,...,Zl,X0} op {y(n-1),...,Yl,YI0}M

where tIxm denotes x mod n, and op is +, -, and x yields

{IX(,-1) op Ytn-1)Il,_),. xI op Y1m,,,IZ0 op Y01mo}.

Digit-wise addition or subtraction modulo an RNS modulus (written as q

and . is easy because the "carry" is guaranteed to be less than the modulus. The

remainder of result can be computed in at, most one more subtraction (called carry-

adjuiis). So, if x and y are mod m,

S+y if +y Y< m;X +. y= x - m if X+ y !M.

Digit-wise modular multiplication (o) requires a full remaindering operation.

Efficient hardware implementation is possible if the moduli are restricted to numbers

of the forms 2P + 1, 2P, and 2P - 1. Using the casting out nines algorithm [Knuth 69],

As in two's-complement a negative number X is represented as A! + X.
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JX12, = X mod 2P,

IXI 2,_l = (X mod 2P) E 2 P-1 (X div 2P), and

IX12P+i (X mod 2P) -2P+1 (X dit 2P),

involving only bit extraction and simple digit-wise modular operations. Choosing

moduli of these forms also facilitates carry detection in modular addition and sub-

traction.

Therefore, simple modnum operations can be reduced to digit-wise operations

modulo the respective moduli with no information carried between the digits. This

lack of a carry chain eliminates the inherent sequentiality when operating on successive

digits in a weighted number system, allowing full parallelism in digit-wise operations.

Since digit-wise operations may occur concurrently, it is possible to implement, on

parallel hardware, modulo M arithmetic in the time required to perform modulo m

arithmetic. This makes modular arithmetic an attractive platform for implementing

high-precision, long word-length arithmetic on a multiprocessor.

2.2 Modnum Division

Although generalized division in the residue number system is complicated

and ill-defined, the particular case of division by a product of any of the moduli

is possible. When a division has remainder zero, it is equivalent to multiplying the

dividend by the divisor's multiplicative inverse. Since each modulus is relatively prime

to all the other moduli, its multiplicative inverses modulo each of the other moduli

is defined.2 Hence division by a product of moduli may be decomposed into a series

of multiplication of the dividend by the inverses of the divisor's factors, provided we

guarantee, at each step, that the remainder is zero. For numbers in modular form, the

modnum digit at each modulus predicts the remainder when the modnum is divided

by that modulus. Therefore, to truncate the original dividend or each intermediate

quotient to a multiple of the next divisor modulus, we simply subtract 3 the entire

number by the value of the modnum digit at the divisor modulus.

Since each of the divisor's factors has no multiplicative inverse modulo itself,

the quotient we form is in an RNS of only the non-divisor moduli. Unique repre-

2 They can be computed by the Euclid GCD algorithm.

3 We can also round up by adding the additive inverst.
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sentation is still guaranteed because the quotient has reduced range relative to the

dividend. The base extension process [Szabo 67] recovers the missing digits. The

algorithmic structure of this procedure resembles that of division.

Each step in modnum division starts with a modnum subtraction and a

modnum multiplication, and then one of the digits is broadcast to the other digit

positions for the next subtraction. The number of steps is equal to the number

of moduli. Simultaneously, the algorithm yields digits in a weighted, mixed-radix

representation, to allow sign detection and magnitude comparison.

The preceding section was meant merely as a reference for the following

chapters. Complete and vigorous treatments of modular algorithms can be found in

[Szabo 67] and [Knuth 69].

3. Implementing Fixed-point Arithmetic

N'lodnum additions, subtractions, multiplications, and scaling by products

of moduli are used to implement fixed-point arithmetic. A fixed-point number f is

represented by the modnum n, where n = fR. R is a fixed-point radix chosen to be a

product of moduli. Each "tick" in this representation is I. Multiple radix points can

be supported simultaneously to ensure precise representation over a wide range.

Fixed-point addition (and hence subtraction) is simply

f, + f2 - (f 1 + f 2)(R) = n1 + n 2

and therefore equivalent to a modnum addition. Fixed-point multiplication is

fi x f2 -- (f x f 2 )(R) = fi x f2( ) -(n X 42)

Division by R "normalizes" the fixed-point number to its previous representation, at

the expense of some precision. Since R is a product of moduli the division can be

done as previously described. In order to hold the quantity (m x M2 ) before scaling,

Al > flihR 2 , and so f < to prevent overflow.
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. 3.1 Minimizing Normalization Operations

Normalizing after each multiplication is expensive. The number of normaliza-

tions can be reduced by delaying them until necessary. For example, when summing

a series of the form fT = flIfI 2 + f21f22 . ..... + flfn 2 we can choose to sum the inter-

mediate products with the radix temporarily raised to R2 . Only one normalization is

needed for the entire multiply-accumulate operation.

A major advantage is that computation proceeds before precision is lost

through normalization. We developed a scheme in which we trdck the approximate

value of our fixed-point numbers with floating-point numbers (flonums). Whenever we

perform a fixed-point opcration. a corresponding flonum operation takes place, albeit,

with less precision. An accurate copy of the floating-point approximation can be

constructed using the mixed-radix digits generated when normalizing products. The

flonum's magnitude can be used to signal the need to normalize and avoid overflow.

Another trick is to pre-scale common factors. For example, if the expression

1 = X, xK appears within a loop, K may be scaled once outside the loop, eliminating

the need to normalize within each iteration. If the approximate dynamic range and

inherent accuracy of relevant numbers are known, either a priori or through the

flonum approximation, pre-scaling can be handled with little or no loss in precision.

These optimizations can be statically managed by the programmer. However,

we believe that automated optimization by a compiler is possible [Dally 89]. The

problems of computing with fixed-point numbers were familiar to programmers before

floating-point arithmetic was invented, and most of the solutions developed would

apply here.

3.2 Division, Comparisons, and Sign-detection

With fixed-point addition, subtraction, and multiplication, we can implement

fixed-point division (reciprocals) using the Newton-Raphson approximation method

[AMD 88]. Because this algorithm has quadratic convergence, we only need about

10 iterations to generate a 900 bit reciprocal even if we start with ail initial guess

with one or two correct bits. Newton-Raphson approximation for other functions are

equally applicable.
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We can quickly compute an approximate answer to the function we are com-

puting by performing floating-point arithmetic on tracking flonums. The answer is

use(l to index into a precomnputed table mapping flonumns to modnunis. A common

table may be shared for all approximation methods.

The flonun approximation also allows gross magnitude comparisons to be

done. ('lose calls are resolved by conversion of the modnum to the inixed-radix

notation.

We can efficiently detect positive numbers close to zero. Since we ensure

that our residue representation is non-redundant and that the moduli are pairwise

relatively prime, tle only case in which all the digits are equal is when modtimum

11< ,,i((). ).4 Since this condition can be checked digit-wise, it can be

lone in parallel.5

4. The Modnum Parallel Architecture

A block diagram of the Modnum multiprocessor is shown in Figure 1.

microcode bus

address bus

perations 3perations Dperations Micro
mod m mod m 1  mod m 0  Flonum :ontroller

nodden1node'%node 0 track ing control

nod p node, S 0,N00

communication/data bus

Figure 1: The Modnum Multiprocessor

'lhe architecture specifies a number of digit nodes, each computing digit -wise

4 Proof: It is "obvious" that tha digits aie ii, fac equal when ,n is smaller tit ti, mniall-
est modirli rnrn, and since each number is uniquely represented and the representatinn iZ non-

rndundant, it. follows that the digits are equal if and only if n < 11min

Assuming the accumulation of each digit's hoolean result can be done at once, e.g. wire
A NI )ed in hardware.
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opera tions of oiln o'hli m They cotnuii ate tfhroingh a synchronous, sha ted hri.

Each node h as m odl ar arlthIinietic hardware, Tneiniory, aii ( a :,equencer, which exe

cutes nanocode t bat is potentially dlifferenit oil each node. lThe (ligit-node seqluen~cer

decodes FiTiCOoofi Inst ruct ions fed fromi a CenitraIfl ol k llr. In adlti ion Ihle coil-

roller perforn is ad11ri-4s (01 111)1tat lolls a rid feedls t lie compuv~tedI addresses to I lie d igit

!iO0les. Also sitting onl the shared iois is the ItekinfodI( a llo-tting-Jpoint milt that

snoops oil the cointroller-sn ppl iedltll( ininst riictons, inemory adldlress ,s. and hitbs (-,)III-

lltiunicat ion. It has its own na tiocodle to exercise proper control of it,; flottig-pjoi nit

h ard ware.

For the prototype, we will use 18 digit nodes, each with :12-bit dat apathis cy-

cledl twice to implemient 64-bit arithmetic. OJur chose-n set of miodrili ranges fromi 2~ 2- 1

to 2 64. These choices canl he changed] conveniently b~y redoinrg field-prograiniable logic

deCvices.

4.1 Digit Node

Each node compIutes with one (digit of the modular representatilon. l';ach

digit of a m~odiln Nis stored1 onl tle corresponding node.

- rtrst oreration

Low 32 bits
Memory Register Fil Fetch -IOperation FWrit

I j ~ ~Adtyust_ Wie

High 32 hits ~ try~tCO"-Plete

Pri Fetch petion Crry Write
Primay Adder AIjust

Carry-detect Lois'-Scn prto Low 32 bits

32-bit llultiphpr ______ Fetch Opration Carry Write1
~onstAd* ust

Carry Adder

Carry-seiect Mux 4

Memory Address Communicaticn

Figure 2: The Datapath Pipeline

The datapath pipeline, shown in Figure 2, is optimized to perform mnodli-

lar add it ion and sid braction . A niew nama'- instruction c'ommtiiiens every pi postage.
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1he instruction and the least-significant 32-bit words (lsw) of the modnum operands

are fetched in the first stage (Fetch). Binary addition on the lsw's happens during

Operation. The result lsw is compared with the modulus lsw in Carry-detect Logic.

Standard registered PAL's perform this function while simultaneously latching the

result to maintain the pipeline. The next stage unconditionally generates a carry-

adjusted lsw. Meanwhile the most-significant words of the operands (msw) have been

fetched and have advanced to the operation stage to yield the raw result rnsw. The full

carrv-dctection may then complete, just in time to select whether the raw-result lsw

or the carry-adjusted lsw gets written back to the register file. In the next nanocycle

the correct msw is similarly selected. The pipeline allows a new modnum addition or

subtraction to commence every 2 nanocycles.

A 32-bit CMOS multiplier performs 64-bit multiplication in 7 nanocYcles.

lhe1 tiltiplier is connected to the arithmetic datapath (not shown in diagram) so as

to allow a new multiplication to commence every 4 nanocycles.

The entire datapath can be implemented with currently available, stock

1-11. and CMOS parts. Standard binary arithmetic units, coupled with a few pro-

graiimfnable logic devices, efficiently perform modular arithmetic. Each pipestage can

(orifortably be completed in S0ns with the parts we have chosen.

4.2 Instruction Sequencing

The central controller supplies microcode to cause nanocode routines to be

c(x(-,lited on each node. This approach combines the benefits of SIMI) and MIMI)

arch itect ures. Different nodes may hae different nanocode. For example, the tracking

Jlolvd runs nanocode that is quite different fron that on digit nodes, and we can

PtD,,ram some digit nodes to perforni two 32-bit operations with short nioduli in the

iin it takes other nodes to couiplele one 61-bit operation. Fixed-point operations

are sequenced as inicrocode instructions, while the modnum operations imlplenwitilig

lieu i are programmed in nanocode. Synchronization is ensured either by carefully

generated nanocode sequences of known length or by wired-ANDed status lines.

4.3 Communication

To perform scaling, one selected digit of each step's result is broadcast to all

other niodes. This is done sequentially on the shared bus. Since ownership of the bus



is pre-determined by the scaling algorithi, it can be software controlled and requires

no explicit arbitration. The controller can also access memory on a selected node and

grant it ownership of the bus. The tracking node may also own the bus, e.g. when it

has to broadcast a Newton-Raphson initial guess.

5. Performance Estimate

As discussed above, modnum (and hence fixed-point) additions and sub-

tractions can start every two 80ns nanocycles, so the peak execution rate for these

instructions is 6 million operations per second (MOPS). Primitive multiplies (with-

out normalization) start every four nanocycles, to yield 31 MOPS peak. The aceragf

speed of the computer will depend on the number of normalizations required by the

application program and whether operations may be effectively pipelined.

6. Conclusions

We designed a multiprocessor architecture to perform high-precision arith-

metic very efficiently. We used the modular arithmetic representation, and developed

the novel method of floating-point tracking to avoid some of its inherent pitfalls. Our

architecture is suitable for implementation with currently available hardware, and the

resulting system will provide high-precision arithmetic with performance comparable

to common double-precision floating-point systems. Our system has immediate ap-

plications in the study of chaotic systems. We expect further applications to develop

in symbolic algebra and cryptography.

7. Future and Relevant Work

We plan to have a prototype of this architecture implemented and tested by

September, 1989. At that point we wish to conduct performance measurements on

this architecture. We will continue to work on optimization techniques, and look into

formal studies of roundoff errors in our fixed-point arithmetic.

Although this architecture is expected to deliver satisfactory performance

for our initial applications, its implementation with off-the-shelf parts requires much

hardware. By implementing each digit board (sans memory) in a single VLSI chip, it

may be possible to implement an entire modnum machine on a single printed-circuit

9



board. This board will be attractive as nodes in a multiprocessor, or as an accelerator

board for a conventional computer.

The design of this architecture is just a means to an end. The primary goal

of tie project is to perform studies on chaotic systems. Not only will this computer be

used to perform detailed numerical studies of chaotic systems, it will also be valuable

for calibrating new simulation techniques using conventional arithmetic, and may

have some impact on the field of numerical analysis.

Number representations using continued fractions (and continued logarithms)

also promise to provide efficient arbitrary-precision arithmetic [Gosper PC]. Most re-

cently [Vuillernin 88] reports some breakthroughs in that area. The Sch6nage-Strassen

FFT multiplication algorithm is efficient for computing long word-length products.

Its implementation is probably most suited for massively parallel machines (such as

the Connection Machine) and word lengths a few orders of magnitude greater than

those we plan to implement.
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